Osiągnięcie polsko-hinduskiego zespołu fizyków przyczyni się do rozwoju komputerów kwantowych

Fizycy z Polski i Indii opracowali rozwiązanie XVIII-wiecznego problem 36 oficerów Eulera, niemożliwy do rozwiązania w języku klasycznej kombinatoryki. Ich pomysł może się przydać do testowania mocy komputerów kwantowych, donosi serwis „Nauka w Polsce”.

Fot. Paulina Rajchel-Mieldzioć. Źródło: materiały autorów

Wybitny osiemnastowieczny matematyk Leonhard Euler dostał zadanie, aby z okazji parady na cześć carycy Katarzyny II ustawić grupę wojskowych w elegancki wzór. Do dyspozycji dostał 25 oficerów: z każdego z pięciu pułków po 1 oficerze z każdej z pięciu rang. W każdym rzędzie i w każdej kolumnie powinien znaleźć się dokładnie jeden oficer danej rangi i dokładnie jeden z danego pułku. Problem najprościej wyobrazić sobie jako sudoku o boku 5. Liczbom przypisane są też kolory – należy ustawić bez powtórek w rzędach i kolumnach nie tylko liczby, ale i kolory.

Euler znalazł rozwiązanie dla 25 oficerów, lecz problem można rozważyć dla kwadratów dowolnej wielkości - nazwanymi później kwadratami grecko-łacińskimi lub kwadratami Eulera (przedstawiając takie kwadraty często stosuje się figury szachowe o różnych kolorach).

Zobacz również:

  • Kwanty od OVHCloud dla edukacji
Osiągnięcie polsko-hinduskiego zespołu fizyków przyczyni się do rozwoju komputerów kwantowych

Kwadraty o boku 3, 4, 5, 7 i każdej kolejnej licznie naturalnej daje się przestawić w postaci klasycznego kwadratu łacińskiego. A o boku 6 - nie. Rys.: Cmglee CC BY-SA 4.0, via Wikipedia

Okazuje się, że dla kwadratów o boku 3, 4, 5, 7, 8, 9, 10 i wszystkich kolejnych liczb naturalnych takie rozwiązanie istnieje. Tylko dla liczby 6 nie ma rozwiązania. Zagadnienie to nazwano problemem 36 oficerów Eulera. Matematyczny dowód, że oficerów nie da się ustawić w kwadrat bez żadnych powtórzeń, pokazał dopiero na początku XX wieku francuski matematyk-amator Gaston Tarry, który za to osiągnięcie został nominowany do Francuskiej Akademii Nauk.

Badacze z polsko-hinduskiego zespołu (Suhail Ahmad Rather, Adam Burchardt, Wojciech Bruzda, Grzegorz Rajchel-Mieldzioć, Arul Lakshminarayan, Karol Życzkowski) zastanawiali się, czy zadanie można rozwiązać, jeśli przeformułuje się nieco problem i dopuści się kwantową naturę oficerów. A to znaczy, że jedno miejsce może być zajmowane niekoniecznie przez jedną postać, ale przez ich kwantowy miks - w odpowiednich proporcjach. Taka zmiana wprowadza niewyobrażalnie duży zakres dodatkowych możliwości, dopuszczonych regułami matematycznymi, które należy przetestować.

Osiągnięcie polsko-hinduskiego zespołu fizyków przyczyni się do rozwoju komputerów kwantowych

Przedstawione przez polski-hinduski zespół kwantowe rozwiązanie problemu 36 oficerów Eulera. Rozmiary figur reprezentują prawdopodobieństwo znalezienia się danego oficera w jakimś polu. Rys: Alpodiopa, CC BY-SA 4.0, via Wikipedia

„W pewnym momencie chcieliśmy się już nawet poddać i zastanawialiśmy się jak pokazać, że także kwantowe reguły nie pozwalają na znalezienie wspomnianego rozwiązania" - mówią w rozmowie z serwisem PAP Nauka w Polsce autorzy. Wtedy jednak Suhail Rather, doktorant z Indii, pokazał, że istnieje przybliżone rozwiązanie problemu. Po przeprowadzeniu szeregu prób komputerowych znaleźli również ścisłe rozwiązanie problemu, które wykorzystuje nieznany dotąd ekstremalny stan kwantowego splatania czterech podukładów. Wyniki opublikowano w renomowanym czasopiśmie naukowym - „Physical Review Letters”.

Dr Karol Życzkowski z UJ i CFT PAN opisuje: „splątanie kwantowe to nieoczekiwane korelacje układów. Przekładając na skalę makroskopową - gdybyśmy dwie monety wprowadzili w kwantowy stan maksymalnie splątany, to poznawszy wynik rzutu jedną monetą, wiedzielibyśmy też, co wypadło na drugiej”. I tłumaczy, że splątanie dwóch układów nie wystarczy, żeby znaleźć rozwiązanie kwantowej wersji zagadnienia Eulera.

Dr Grzegorz Rajchel-Mieldzioć, który doktorat obronił w CFT PAN w Warszawie, a obecnie pracuje w instytucie ICFO w Barcelonie, dodaje, że aby rozwiązać zagadkę Eulera, trzeba było szukać układów powiązanych ze sobą w bardziej skomplikowany sposób. Fizycy skłaniali się do stwierdzenia, że nie może istnieć maksymalne czterocząstkowe splątanie w wymiarze sześć, takim samym jak wymiar kwadratu Eulera. „A jednak my pokazaliśmy matematycznie, że takie splątanie istnieje i da się je stosunkowo prosto skonstruować. Mimo że klasyczne metody na konstrukcję tego splątania tu nie działały” - mówi dr Rajchel-Mieldzioć.

Osiągnięcie polsko-hinduskiego zespołu fizyków przyczyni się do rozwoju komputerów kwantowych

Rozwiązanie kwantowego problemu Eulera przedstawione na szachownicy 6 na 6: każde pole symbolizuje oficera odpowiadającego superpozycji stanów kwantowych, a wielkość każdej figury odzwierciedla jej udział w danym stanie. Kolory wyznaczają podział 36 oficerów na 9 grup, każda po czterech oficerów. Rys. Wojciech Bruzda

Aby wyjaśnić, czym wyróżnia się ten nowy stan splątany, naukowcy używają porównania z rzutem czterema sześciennymi kostkami o czterech kolorach, a wyniki opisują kolejną zmienną w układzie: rząd i kolumnę w kwadracie oraz rangę i pułk oficera. W splątanym stanie kwantowym kostki te są ze sobą tak powiązane, że obserwacja rezultatu dowolnych dwóch kostek pozwala przewidzieć wynik rzutu pozostałymi dwiema kostkami. „W naszej pracy pokazaliśmy, że możliwe jest istnienie takich kwantowych kostek i teleportowanie stanu pomiędzy nimi” - komentuje dr Rajchel-Mieldzioć.

Rozwiązanie fizyków jest dodatkowo całkiem eleganckie z matematycznego punktu widzenia: pojawia się w nim podział planszy na dziewięć bloków, każdy złożony z czterech pól. A także tzw. złota proporcja φ, charakterystyczna dla znanego w starożytności złotego podziału odcinka, w którym stosunek dłuższej części do całości jest taki sam, jak stosunek krótszej jego części do dłuższej.

Wszystko byłoby piękną teorią łączącą fizykę kwantową z zagadkami logicznymi, lecz na jednej z konferencji naukowych pojawił się pomysł, jak wykorzystać pracę polsko-hinduskiego zespołu w praktyce. Okazuje się, że znalezione maksymalnie splątane stanów kwantowe opisane w „Phys. Rev. Letters” można użyć do testowania mocy komputerów kwantowych. “Komputery kwantowe są na razie słabe: albo mają mało kubitów i małą moc obliczeniową, albo mają dużo kubitów i są mało dokładne” - opisuje dr Adam Burchardt, który doktorat z fizyki obronił na UJ, a obecnie pracuje w QuSoft w Amsterdamie. – „Możemy się jednak spodziewać, że z czasem będą mieć coraz większe możliwości. Dobrze byłoby więc mieć w zanadrzu metody, które pozwolą sprawdzać, jak szybkie i dokładne są obliczenia na danym komputerze kwantowym. Algorytmy, w których konieczne byłoby wytworzenie stanów maksymalnie splątanych - a więc takich, jakie proponujemy - byłyby dobrą metodą przeprowadzenia testu, czy komputer jest już odpowiednio silny. Bo jeśli komputer kwantowy nie będzie w stanie splątywać kubitów w zaproponowany przez nas sposób, to znaczy, że nie jest zbyt mocny” - tłumaczy dr Burchardt.

Źródło: PAP Nauka w Polsce

W celu komercyjnej reprodukcji treści Computerworld należy zakupić licencję. Skontaktuj się z naszym partnerem, YGS Group, pod adresem [email protected]

TOP 200